更新于 

进阶篇-为小白设计的电池教程

版权©️声明 : 本文章神楽小白(GZ小白)的部落阁


                             为小白设计的电池教程(DSDT)
                                   编写者:G.Z.小白

这个教程会尽量写的简单,只要你认真,你绝对看得懂!
此教程整理,修改,借鉴于:http://bbs.pcbeta.com/viewthread-1751487-1-1.html
对其进行了完善,以及一些有问题的地方进行了修改。

初步了解

实现原理 : 由于苹果无法使用ACPI EC中超过8位的寄存器(又叫EC缓冲区,Embedded Controller Buffer),我们需要利用Hotpatch的原理更名涉及到EC的Method使其失效并在新建的SSDT补丁中重新定义它们,使macOS能够通过SMC电池驱动正确识别电池EC信息。

好了,我觉得你应该得有个可以用的DSDT吧,如果没有请去提取自己的DSDT并反编译,排好错。具体见群文件的教程。
首先打开我们的DSDT,搜索(Command + F)Embeddedcontrol

OperationRegion名称,此为EC操作区的名称,一般名称为ERAM、ECF2、ECF3、ECOR等,并且有的机器可能不止一个

好了现在,我们找到了这里,仔细观察,发现它在EC0控制器下,具体路径是_SB.PCI0.LPCB.EC0。当然每个人的可能不一样,最后的EC0,还可能是ECDV、EC、H_EC。
这里我们主要关注Field里的东西,就是那一堆四个字母的东西。在这一堆东西中,我们只要注意8位以上的就行(就是右边的数字)。因为电池驱动无法处理8位以上的字节,所以就需要我们手动来处理来。
我们需要用到的工具:计算器(Mac自带)Maciasl新建一个txt文件

打开txt文件,我们先把一下代码复制进去(我会把这个做成样例放在群文件
处理方法补丁如下

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

# created by GZxioabai

# add method B1B2
into method label B1B2 remove_entry;
into definitionblock code_regex . insert
begin
Method (B1B2, 2, NotSerialized)\n
{\n
Return(Or(Arg0, ShiftLeft(Arg1, 8)))\n
}\n
end;

# add method B1B4
into method label B1B4 remove_entry;
into definitionblock code_regex . insert
begin
Method (B1B4, 4, NotSerialized)\n
{\n
Store(Arg3, Local0)\n
Or(Arg2, ShiftLeft(Local0, 8), Local0)\n
Or(Arg1, ShiftLeft(Local0, 8), Local0)\n
Or(Arg0, ShiftLeft(Local0, 8), Local0)\n
Return(Local0)\n
}\n
end;

# add utility methods to read/write buffers from/to \_SB.PCI0.LPCB.EC0
into method label RE1B parent_label \_SB.PCI0.LPCB.EC0 remove_entry;
into method label RECB parent_label \_SB.PCI0.LPCB.EC0 remove_entry;
into Device label EC0 insert
begin
Method (RE1B, 1, NotSerialized)\n
{\n
OperationRegion(ERAM, EmbeddedControl, Arg0, 1)\n
Field(ERAM, ByteAcc, NoLock, Preserve) { BYTE, 8 }\n
Return(BYTE)\n
}\n
Method (RECB, 2, Serialized)\n
// Arg0 - offset in bytes from zero-based \_SB.PCI0.LPCB.EC0\n
// Arg1 - size of buffer in bits\n
{\n
ShiftRight(Arg1, 3, Arg1)\n
Name(TEMP, Buffer(Arg1) { })\n
Add(Arg0, Arg1, Arg1)\n
Store(0, Local0)\n
While (LLess(Arg0, Arg1))\n
{\n
Store(RE1B(Arg0), Index(TEMP, Local0))\n
Increment(Arg0)\n
Increment(Local0)\n
}\n
Return(TEMP)\n
}\n
end;

into method label WE1B parent_label \_SB.PCI0.LPCB.EC0 remove_entry;
into method label WECB parent_label \_SB.PCI0.LPCB.EC0 remove_entry;
into Device label EC0 insert
begin
Method (WE1B, 2, NotSerialized)\n
{\n
OperationRegion(ERAM, EmbeddedControl, Arg0, 1)\n
Field(ERAM, ByteAcc, NoLock, Preserve) { BYTE, 8 }\n
Store(Arg1, BYTE)\n
}\n
Method (WECB, 3, Serialized)\n
// Arg0 - offset in bytes from zero-based EC\n
// Arg1 - size of buffer in bits\n
// Arg2 - value to write\n
{\n
ShiftRight(Arg1, 3, Arg1)\n
Name(TEMP, Buffer(Arg1) { })\n
Store(Arg2, TEMP)\n
Add(Arg0, Arg1, Arg1)\n
Store(0, Local0)\n
While (LLess(Arg0, Arg1))\n
{\n
WE1B(Arg0, DerefOf(Index(TEMP, Local0)))\n
Increment(Arg0)\n
Increment(Local0)\n
}\n
}\n
end;

以上的这些东西是同用的处理方法,包括B1B2(16字节处理),B1B4(32字节处理),WECB和RECB(这两个是处理32字节以上的)

16位处理方法

接下来,我们来讲讲16位如何处理。

比如我们在Field下找到的这个16位的BADC,我们需要将它拆分掉,拆成来两个8字节,这样就能被电池驱动处理了。

读取操作:

我们还是先来解释一下吧,什么是读取什么是写入?在DSDT中常见的是下面两种语句。
第一种语句(老):

Store(BADC,ENC0)

在这里,Store语句中,BADC的操作,而ENC0的操作,解释一下,就是将BADC写入到ENC0,所以你可几个口诀就是“左读右写

第二种语句(新):

ENC0 = BADC

在这里,就刚好相反了,这里没有了Store,但意思还是将BADC写入到ENC0,所以BADC还是ENC0还是

写入操作:

Store(FB4,BADC)

在这里,Store语句中,FB4的操作,而BADC的操作,解释一下,就是将BADC写入到ENC0,所以你可几个口诀就是“左读右写

那么其实很好理解了BADC = FB4这个就跟上面提到的反一下
了解了这些那么你可以继续接下来的拆分工作了。

Field(声明字段)下处理补丁:into Device label EC0 code_regex BADC,\s+16, replace_matched begin DCA0,8,DCA1,8, end;

我们先来理解一下这个,

  • into针对
  • Device label关于这个设备范围里
  • EC0:设备的名称
  • code_regex匹配搜索
  • BADC,\s+16被搜索的代码,\s+16表示16字节
  • replace_matched匹配替换
  • begin DCA0,8,DCA1,8, end从什么什么开始,到什么什么结束,这里的意思就是,用于替换的是“DCA0,8,DCA1,8, ”

那么整句话的意思就是,

设备EC0的范围内搜索16字节的BADC,如果有,就替换为“DCA0,8,DCA1,8,”

我们在来表示成一个处理结果:BADC, 16,----->DCA0,8,DCA1,8,
当然这只是在声明字段中进行拆分处理,我们还要在BADC被调用的地方进行处理。
我们首先需要查找一下BADC在哪些地方被调用。(重要提醒:没被调用的其实不需要拆分!意思是你根本不用去管它!

被调用的字段(一般在Method下)那里,对字段进行拆分:
的处理补丁:into method label SMTF code_regex BADC replaceall_matched begin B1B2(DCA0,DCA1) end;

解释:

  • into method label SMTF针对Method为SMTF的这个范围内
  • code_regex 匹配(搜索)
  • BADC被搜索的字段
  • replace_matched替换匹配
  • begin B1B2(DCA0,DCA1) end这是被替换的内容

那么总的意思就是,

  • 在method为SMTF这个范围里面,搜索“BADC,\s+16”, ,如果有,就把它替换为“DCA0,8,DCA1,8,” 。

那么最后的处理结果是:

未处理前:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
Method (SMTF, 1, NotSerialized)
{
If (LEqual (Arg0, Zero))
{
Return (BADC)
}

If (LEqual (Arg0, One))
{
Return (Zero)
}

Return (Zero)
}

打了补丁之后:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
Method (SMTF, 1, NotSerialized)
{
If (LEqual (Arg0, Zero))
{
Return (B1B2 (DCA0, DCA1))
}

If (LEqual (Arg0, One))
{
Return (Zero)
}

Return (Zero)
}

当然啦,这仅仅是BADC如果是读取的时候的处理,那要是碰到写入的时候,我们就要像下面这样处理,不能使用B1B2的方法了
比如:
Store (Arg0, BADC) (BADC是16位的情况)
需要改为:
Store (ShiftRight(Arg0,8),DCA1) (DCA1是16位拆分后的第二个)
Store (Arg0,DCA0) (DCA0是16位拆分后的第一个)
那么补丁,我们就可以这样写:

into method label SMRW code_regex Store\s\(Arg3,\sBADC\) replaceall_matched begin Store(ShiftRight(Arg3,8),DCA1)\nStore(Arg3, DCA0) end;**

其中这段文字中的\s代表的是一个空格,\n代表的是换行,也就是回车,主要的是在搜索那里,需要注意符号转义,在任何符号前都要加一个反斜杠转义,也就是加一个\

那最后的处理结果是:
未处理:

1
Store (Arg0, BADC)

打了补丁后:

1
2
Store (ShiftRight(Arg0,8),DCA1)
Store (Arg0,DCA0)

32字节处理方法

32位字段的处理方法其实跟16位一样,用到的是B1B4,区别就是,16位拆除2个,32拆除4个
在Field里查找32位的,这里我们也是举一个例子,比如B1CH

补丁如下:
into Device label EC0 code_regex B1CH,\s+16, replace_matched begin CH10,8,CH11,8,CH12,CH13 end;
处理结果为:
B1CH,32, ---—> BC0H,8,BC1H,8,BC2H,8,BC3H,8,
我们可以发现,这个跟16位的差不多,就是后面多拆2个,那就不用多废话解释了。
我们直接讲在被调用的地方的处理(32字节基本不会有写入操作,也从未出现过
补丁如下:
into method label _BIF code_regex B1CH replaceall_matched begin B1B4(CH10,CH11,CH12,CH13) end;
那这个也就不解释了,差不多的意思。其中B1B432位处理方法
处理结果:
未处理:

1
2
3
4
Method (_BIF, 0, NotSerialized)
{
Store (B1CH, IFCH) //未处理前
}

打了补丁后:

1
2
3
4
Method (_BIF, 0, NotSerialized)
{
Store (B1B4 (BC0H, BC1H, BC2H, BC3H), IFCH) //把被调用B1CH两处拆分为4个字节
}

偏移量计算

到了32位以上的字段处理,我们会使用到RECB(读)WECB(写)两个处理方法
我先给你看两个例子:
RECB(0x98, 64)
WECB (0x1C, 256, FB4)
我们来解释一下它们的组成部分,RECB(偏移量, 字段长度)WECB(偏移量, 字段长度,未处理前的前参数 )
字段长度很好理解,64位就是64,128位就是128,256位就是256
WECB中的未处理前的前参数,我们举个例子好理解一点
比如:
Store (FB4, SMD0)
SMD0256位的需要处理的字段,在这里是写入,那么它的前参数,顾名思义就是前面那个FB4
那么其实,最主要的问题是偏移量了。
举例1:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
Offset (0x04), (基地址)
CMCM, 8, //0x04
CMD1, 8, //0x05
CMD2, 8, //0x06
CMD3, 8, //0x07
Offset (0x18),
Offset (0x19), (基地址)
SMST, 8, //0x19
MBMN, 80, //0x1A
MBPN, 96, //0x24
GPB1, 8, //0x30
GPB2, 8, //0x31
GPB3, 8, //0x32
GPB4, 8, //0x33

我们看这里的,MBMN是需要处理的80位字段,它的偏移量的计算就要涉及到它上面的基地址,我们看到了那个基地址是0x19,我们还可以发现它前面有个8位的SMST,我们将8除以8,得到1,再把0x19加上这个1,最后得到了0x1A,那么下面那个MBPN的偏移量怎么算呢,就是将前面的都加起来除以8,再加上基地址,就是8加上80得到88,除以8,等于11,转换为16进制就是B,0x19加上B,等于0x24.(注意的是,在除以8后的数字,一定要转换为16进制,再加上基地址!
举例二:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Offset (0x53),      //(基地址)     
B0TP, 16, // 从基地址起 ,为0x53
B0VL, 16, //16,为2个字节; 计算:上一个的起始地址0x53+0x2(上一个的16位占了2个字节,10转为16进制为0x2)值为0x55
B0CR, 16, //16,为2个字节; 计算:上一个的起始地址0x55+0x2(上一个的16位占了2个字节,10转为16进制为0x2)值为0x57
B0AC, 16, //16,为2个字节; 计算:上一个的起始地址0x57+0x2(上一个的16位占了2个字节,10转为16进制为0x2)值为0x59
B0ME, 16, //16,为2个字节; 计算:上一个的起始地址0x59+0x2(上一个的16位占了2个字节,10转为16进制为0x2)值为0x5b
B0RS, 16, //16,为2个字节; 计算:上一个的起始地址0x5b+0x2(上一个的16位占了2个字节,10转为16进制为0x2)值为0x5d
B0RC, 16, //16,为2个字节; 计算:上一个的起始地址0x5d+0x2(上一个的16位占了2个字节,10转为16进制为0x2)值为0x5f
B0FC, 16, //16,为2个字节; 计算:上一个的起始地址0x5f+0x2(上一个的16位占了2个字节,10转为16进制为0x2)值为0x61
B0MC, 16, //16,为2个字节; 计算:上一个的起始地址0x61+0x2(上一个的16位占了2个字节,10转为16进制为0x2)值为0x63
B0MV, 16, //16,为2个字节; 计算:上一个的起始地址0x63+0x2(上一个的16位占了2个字节,10转为16进制为0x2)值为0x65
B0ST, 16, //16,为2个字节; 计算:上一个的起始地址0x65+0x2(上一个的16位占了2个字节,10转为16进制为0x2)值为0x67
B0CC, 16, //16,为2个字节; 计算:上一个的起始地址0x67+0x2(上一个的16位占了2个字节,10转为16进制为0x2)值为0x69
B0DC, 16, //16,为2个字节; 计算:上一个的起始地址0x69+0x2(上一个的16位占了2个字节,10转为16进制为0x2)值为0x6b
B0DV, 16, //16,为2个字节; 计算:上一个的起始地址0x6b+0x2(上一个的16位占了2个字节,10转为16进制为0x2)值为0x6d
B0SI, 16, //16,为2个字节; 计算:上一个的起始地址0x6d+0x2(上一个的16位占了2个字节,10转为16进制为0x2)值为0x6f
B0SN, 32, //32,为4个字节; 计算:上一个的起始地址0x6f+0x2(上一个的16位占了2个字节,10转为16进制为0x2)值为0x71
B0MN, 96, //96,为12个字节 计算:上一个的起始地址0x71+0x4(上一个的32位占了4个字节,10转为16进制为0x4)值为0x75
B0DN, 64, // 64,为8个字节;计算:上一个的起始地址0x75+0xc(上一个的96位占了12个字节,10转为16进制为0xc)值为0x81
B0CM, 48, // 计算:上一个的起始地址0x81+0x8(64位占了8个字节,10转为16进制为0x8)值为0x89

这里我就不说明了,自己看右边的注释理解一下吧。
举例3:

1
2
3
4
5
6
7
8
9
10
Offset (0x5D),     //(基地址)  
ENIB, 16, // 16,为2个字节; 从基地址起 ,为0x5D
ENDD, 8, //8,为1个字节; 计算:上一个的起始地址0x5D+0x2(上一个的16位占了2个字节,10转为16进制为0x2)值为0x5F
SMPR, 8, //8,为1个字节; 计算:上一个的起始地址0x5F+0x1(上一个的8位占了1个字节,10转为16进制为0x1)值为0x60
SMST, 8, //8,为1个字节; 计算:上一个的起始地址0x60+0x1(上一个的8位占了1个字节,10转为16进制为0x1)值为0x61
SMAD, 8, //8,为1个字节; 计算:上一个的起始地址0x61+0x1(上一个的8位占了1个字节,10转为16进制为0x1)值为0x62
SMCM, 8, //8,为1个字节; 计算:上一个的起始地址0x62+0x1(上一个的8位占了1个字节,10转为16进制为0x1)值为0x63
SMD0, 256, //256,为32个字节; 计算:上一个的起始地址0x63+0x1(上一个的8位占了1个字节,10转为16进制为0x1)值为0x64
BCNT, 8, //8,为1个字节; 计算:上一个的起始地址0x64+0x20(上一个的256位占了32个字节,10转为16进制为0x20)值为0x84
SMAA, 24, //8,为1个字节; 计算:上一个的起始地址0x84+0x1(上一个的8位占了1个字节,10转为16进制为0x1)值为0x85

举例4 最为简单:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Field (ERAM, ByteAcc, NoLock, Preserve)
{
Offset (0x04),
FLD0, 64 // 64,为8个字节; 从基地址起 ,为0x04(偏移量)
}

Field (ERAM, ByteAcc, NoLock, Preserve)
{
Offset (0x04),
FLD1, 128 // 128,为16个字节; 从基地址起 ,为0x04(偏移量)
}

Field (ERAM, ByteAcc, NoLock, Preserve)
{
Offset (0x04),
FLD2, 192 // 192,为24个字节; 从基地址起 ,为0x04(偏移量)
}

Field (ERAM, ByteAcc, NoLock, Preserve)
{
Offset (0x04),
FLD3, 256 // 256,为32个字节; 从基地址起 ,为0x04(偏移量)
}

举例五 特殊:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
OperationRegion (SMBX, EmbeddedControl, 0x18, 0x28)            //第三个值是起始地址
Field (SMBX, ByteAcc, NoLock, Preserve)
{
PRTC, 8, //8,为1个字节; 上面第三个值是起始地址0x18
SSTS, 5, //计算:上一个的起始地址0x18+0x1(上一个的8位占了1个字节,10转为16进制为0x1)值为0x19
, 1,
ALFG, 1,
CDFG, 1, //上面 5+1+1+1才凑够8位(1字节)
ADDR, 8, //8,为1个字节;计算:上一个的起始地址0x19+0x1(上面 5+1+1+1才凑够8位占了1个字节,10转为16进制为0x1)值为0x19 0x1A
CMDB, 8, //8,为1个字节; 计算:上一个的起始地址0x1A+0x1(上一个的8位占了1个字节,10转为16进制为0x1)值为0x1B
BDAT, 256, //256,为32个字节;计算:上一个的起始地址0x1B+0x1(上一个的8位占了1个字节,10转为16进制为0x1)值为0x1C
BCNT, 8,
, 1,
ALAD, 7,
ALD0, 8,
ALD1, 8

}

32位以上字段的处理(包括64,128,256等)

在Field下,我们需要对其进行重命名使其失效。
补丁如下:

into Device label EC0 code_regex (SMD0,)\s+(256) replace_matched begin SMDX,%2,//%1%2 end;

这里需要注意的是要打括号!,还有后面的SMDX是重命名后的结果,**%2,//%1%2**这个也是要加上的!
接下来在被调用的地方进行处理:

读取调用

Store (SMD0, FB4)
我们要用到RECB,补丁如下:

into method label MHPF code_regex SMD0 replaceall_matched begin RECB(0x1C, 256) end;
处理结果为:Store (SMD0, FB4) —> Store (RECB (0x1C, 0x0100), FB4)

写入调用

Store (FB4, SMD0)
我们要用到WECB,补丁如下:

into method label MHPF code_regex Store\s\(FB4,\sSMD0\) replaceall_matched begin WECB(0x1C,256,FB4) end;

值得注意的是,我们这边是将整个Store语句进行了替换,这也是WECB处理的不同之处。
处理结果:Store (FB4, SMD0) —> WECB (0x1C, 256, FB4)

Mutex确认,最后检查

确保DSDT里的Mutex都是0x00,不然可能会出现电量显示0%的情况。
在DSDT里搜索Mutex,如果有的不是0x00,你就自己手动改成0x00。

补充

当电池有时能正常显示电量,有时不能会出现一个小叉,则可能是多个电池的位置导致的,如图有两个位置,分别为“BAT0”和“BAT1”,我们需要禁用掉“BAT1”这个位置,以达到正常读取电量

加入博主的Hackintosh交流群:679838716